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The aim of this paper is to relate morphological properties of single

biomacromolecules based on molecular enclosing forms indexed by an

appropriate form lattice to the symmetry of the crystal where the molecules

are periodically packed. Similar to the way in which the ‘molécule intégrante’ of

Haüy permitted a molecular interpretation of the law of rational indices of

crystal growth forms, alternative molecular enclosing forms, indexed by a so-

called packing lattice, allow one to bridge the gap between form and crystal

lattices. In this first part, selected tutorial examples illustrate the validity of the

approach and the crystallographic compatibility between molecular and crystal

structures. In particular, integral molecular lattices are shown to imply the

observed axial ratios between crystal lattice parameters, leading sometimes to

surprising results, like a cubic crystal lattice with a unit cell having a trigonal

molecular filling with hexagonal enclosing form.

1. Introduction

The RCSB Protein Data Bank (PDB) is the classical portal to

biological macromolecular structures, and proteins in parti-

cular (visit http://www.pdb.org). In the corresponding PDB

files one finds the Cartesian coordinates of the atoms in the

crystal, together with the corresponding transformations

generating the space group and the biomolecule.

Also indicated are the polypeptide chains of the multimer

defining the oligomerization state of the active biomolecule

and its point-group symmetry. The molecular symmetry is,

possibly, larger than the point group of the crystal and involves

additional non-crystallographic symmetry transformations, a

phenomenon usually denoted as pseudosymmetry (Giaco-

vazzo et al., 1992).

The difference in point-group symmetry of the crystal and

of the biomolecule is as such not surprising. What is surprising

is the observation that the crystal lattice may have a point-

group symmetry larger than that implied by the filling of the

unit cell. In the PDB files these properties are given in an

implicit way only, and are sometimes mentioned in the

primary reference.

The two phenomena can be considered hints to a larger

class of structural relations not taken into account by classical

crystallography. The non-accidental character of these rela-

tions has been discussed by the author in a number of papers

devoted to about 30 different protein structures and ten

nucleic acid compounds. These numbers are ridiculously small

in comparison with the more than 50 000 known structures

reported in the PDB. This does not imply that they represent a

few exceptional cases only. The main, new additional property

is the structural relevance of enclosing molecular forms with

vertices at points of a lattice: the molecular form lattice. This

lattice is left invariant by the molecular symmetry group and it

typically allows the external envelope to be connected by an

invertible integral scaling transformation with a central hole.

This transformation often relates C� positions at extremal

distances with respect to a rotational axis. In general, however,

a form lattice allows one to describe symmetry-adapted

morphological properties and not atomic positions. Quite

unexpectedly, the form lattices of axial-symmetric multimers

explored so far are integral. This means that the metric tensor

of the lattice basis vectors has integral entries (up to a constant

factor relating structure with geometry). For example, the

lattice parameter relation a0 ¼ c0 is observed in a number of

three-dimensional hexagonal lattices, where a0 and c0 are the

length of lattice basis vectors in the radial and in the axial

direction, respectively (Janner, 2005).

In crystals of any kind, integral lattices show up in peaked

statistical distributions of lattice parameter ratios (in the case

mentioned above the ratio is one) (Janner, 2004; de Gelder &

Janner, 2005a,b). This feature, not explained by the known

crystallographic laws, is not at all or only very badly under-

stood except in the case of close packing of equal spheres.

The question then arises as to the nature of the connection

between the global crystal lattice and the local molecular form

lattice, at least for biomacromolecules where the form lattice

plays a structural role. One can reformulate this problem as

the relation between crystal and molecular morphology, both

cases obeying the law of rational indices, in the reciprocal

and the direct space, respectively. The aim of the present work

is to learn more about these aspects through a number of

specific examples, analysed in a similar way. It requires new

concepts which reflect a working hypothesis more than basic



elements of a theory challenging the foundations of crystal-

lography.

The approach is geometric, phenomenological and

morphological. It corresponds, so to say, to crystallography as

it was in the past before the use of space groups, when the

crystal growth forms were analysed by means of lattices and of

crystal classes, and when students were warned against

excessive illusions raised by the theory of Schoenflies, still

considered in 1911 as a crystallographic speculation (Friedel,

1911).

In the present work (Part I), the basic concepts are intro-

duced and illustrated by tutorial examples. In Part II (Janner,

2010), polymorphic packings are considered of the same

icosahedral form of the various Rhinovirus serotypes and

which depend on the space-group symmetry. Even in the case

of crystal growth forms, morphology also depends on the

underlying space-group symmetry, despite what has been said

above. A planned future part deals with the rhodopsin–retinal

complex which crystallizes together with lipids, observed by

X-ray diffraction as fragments, to whom only collectively an

indexed enclosing form can be attached. One of these cases is

reported here as a tutorial example (the last one).

The results obtained so far, besides providing a solution to

the problem of the connection between crystal and molecular

structures, should help to formulate the observed relations

between form, symmetry and packing in a more precise way.

2. Basic concepts

The starting point is a biomolecule as generated from the

atomic coordinates of polypeptide chains (and possibly addi-

tional atoms) by a set of transformations (‘biomt’) as given in a

PDB file, leading to the molecular symmetry group KM of the

multimer representing the biologically significant state of the

molecule.

A molecular form is then considered with planar facets and

point-group symmetry KM enclosing the biomolecule and

having vertices at points of a lattice: the form lattice �F. Note

that the enclosing form is not unique, and so neither is the

form lattice, and may depend on the accuracy adopted. The

form lattice allows one to assign rational indices (or equiva-

lently integral ones) to the vertices of the molecular form.

These indices are nothing other than the lattice coordinates of

the corresponding points. In the usual way, by means of the

reciprocal form lattice ��F, rational indices can also be

assigned to the facets of the form. In addition to the facets of

the external envelope, one often also has internal indexed

facets delimiting molecular holes and, in particular, a central

channel.

The key point is that a single form lattice should allow all

the vertices involved (internal and external ones) to be

indexed without the indices being too high and with a

reasonable characterization of the molecular form. As has

already been pointed out, the form adopted is a compromise

between simplicity of the description and fitting to the atomic

structure of the molecule, so that there are cases where one

has to accept protruding chain segments.

In general, the properties of the indexable molecular forms

and the corresponding form lattices are far from trivial and

justify their investigation, even if they are not taken into

account by the known crystallographic laws, and not (yet)

understood in terms of physical or chemical laws. For example,

in the case of the axial-symmetric proteins investigated so far,

the central channel and external envelope have vertices

related by a crystallographic scaling leaving the form lattice

invariant and expressible by invertible integral (or rational)

matrices. Moreover, the form lattices of proteins are often

integral, as mentioned in x1. All these aspects involve single

molecules.

Considered here are biomolecules periodically packed in a

crystal. No quasi-crystals of biomolecules have been observed

in nature, even when the point-group symmetry is non-

crystallographic in three dimensions (as in quasi-crystals). The

molecular enclosing form to be considered for biomolecules

packed in a crystal has to be a crystal symmetry-adapted

indexable form. This implies that the form, and the corre-

sponding lattice, the packing lattice �P, have to be invariant

with respect to the space group of the crystal. Accordingly, �P

contains the crystal lattice � as a sublattice, has at least the

same holohedry and allows a symmorphic space-group char-

acterization of the crystal.

To conclude, the relation between molecular symmetry and

crystal packing is discussed on the basis of the mutual relations

between three situations:

(i) the symmetry of the isolated biomolecule, its molecular

enclosing form and the corresponding form lattice �F,

(ii) the packing unit of the crystal in terms of a symmetry-

adapted molecular packing form, which recalls the historical

concept of molécule intégrante considered by Haüy, and the

packing lattice �P, and finally

(iii) the symmetry of the atomic arrangement, the crystal

lattice � and the space group G.

3. Tutorial examples

Typical situations are illustrated for a number of biomolecules

whose structural data, obtained by X-ray diffraction, have

been deposited as a PDB file. The examples are human

mitochondrial ferritin [cubic packing of octahedral ferritin

cages, PDB code 1r03 (Langlois d’Estaintot et al., 2004)];

hemocyanin (subunit II) from Limulus [cubic close packing of

hexagonal prismatic forms, PDB code 1ll1 (Liu et al., unpub-

lished)]; vanillyl-alcohol oxidase [close-packed tetragonal

forms, PDB code 1vao (Mattevi et al., 1997)]; octameric SAP-

like pentraxin from Limulus polyphemus [octagonal bio-

molecule oriented in the crystal according to the 422 subgroup

of the molecular 822 symmetry point group, PDB code 3flr

(Shrive et al., 2009)]; human Dmc1 protein [layers of octagonal

tilings of slightly twisted double octagonal rings, PDB code

1v5w (Kinebuchi et al., 2004)]; heptameric SAP-like pentraxin

from Limulus polyphemus [monoclinic packing of double-

stacked heptameric cylindrical rings, PDB code 3flp (Shrive et

al., 2009)]; light-harvesting protein LH2 [face-centred cubic

(f.c.c.) packing of cylindrical enclosing forms of double-
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stacked nonamers, PDB code 1kzu (Prince et al., 1997)];

rhodopsin–retinal complex [hexagonal form, symmetry and

packing, PDB code 1qko (Edman et al., 1999)].

3.1. Human mitochondrial ferritin

The first example is a very simple one. The biomolecule is a

24-mer forming an octahedral cage with point symmetry

KM ¼ 432. The molecular form has six tetragonal central

channels with square edge L0 ¼ 2a0 and height H ¼ 20a0

equal to the cubic edge Le of the external envelope. The fitting

value a0 = 5.9 Å is the lattice parameter of the cubic form

lattice �Fða0Þ. These properties have already been derived in a

paper devoted to octahedral protein cages (Janner, 2008).

The packing form is the same as the molecular form. The

sphere inscribed in the cubic envelope has radius R0 ¼ 10a0

and represents an alternative packing form.

The packing lattice �PðuÞ is cubic as is the crystal lattice

�ðaÞ. The corresponding lattice parameters are a ¼ 30u =

181.41 Å, so that u = 6.047 Å, which has practically the same

value as a0. Accordingly one has here the special case:

�F ¼ �P � �, as shown in Fig. 1.

The crystal space group is F432. The centres of the packing

forms are at the Wyckoff positions 4(a) 000; 0 1
2

1
2 ;

1
2 0 1

2 ;
1
2

1
2 0,

leading to an f.c.c. packing with inter-spherical distance

D ¼ a=21=2 � 2Re ¼ 1:21u ’ 21=2u. Note that for the close-

packed case D would be zero.

3.2. Hemocyanin (subunit II) from Limulus

The second example illustrates the intriguing case of a cubic

crystal lattice, which appears as an hexagonal integral lattice

with axial ratio c=a ¼ 61=2, simply because the content of the

unit cell has trigonal symmetry.

The biomolecule is the hexameric metcyanin II (a double-

stacked trimer) with point-group symmetry KM ¼ 32. The

hexagonal enclosing form and a trigonal refinement is shown

in Fig. 2. The radius R0 of the hexagonal central hole defines

the radial lattice parameter r0 ¼ a0 of the hexagonal form

lattice �F, the axial lattice parameter being c0 ¼ r0=21=2. The

hexagonal prismatic envelope has radius Re ¼ 10r0 and height
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Figure 1
The packing of the human mitochondrial ferritin in the crystal with space-
group symmetry F432 and lattice parameter a is shown along a fourfold
axis, together with three enclosing forms: a cubic one with edge 2a=3 and
vertices at points of an f.c.c. lattice with parameter u ¼ a=30, the refined
form discussed in Janner (2008) and a sphere inscribed in the cubic form.
The tetragonal central channel has the square edge 2a. The centres of the
packing forms are at the Wyckoff position 4ðaÞ.

Figure 2
The hexagonal enclosing form of metcyanin II (a double-stacked trimer
of the hemocyanin subunit II from Limulus) has height H and a central
hole with radius R0, which define the parameters of the hexagonal form
lattice �Fða0; c0Þ by R0 ¼ a0 and H ¼ 20c0 ¼ 10ð2Þ1=2a0. Therefore �F is
integral with axial ratio c0=a0 ¼ 1=21=2. The radius of the external
envelope is Re ¼ 10a0 ¼ H=21=2.



H ¼ 10ð2Þ1=2r0 ¼ 20c0. Accordingly, �F is integral hexagonal

with an axial ratio c0=a0 ¼ 1=21=2.

The packing form is the same as the hexagonal prismatic

form of the biomolecule, having inscribed, as alternative

packing form, a cylinder with radius Rc and height H:

Rc ¼
31=2

2
Re ¼ 5ð3Þ1=2r0; H ¼ 10ð2Þ1=2r0; H=Rc ¼

2ð6Þ1=2

3
:

ð1Þ

The crystal packing is a cubic close packing of hexagonal

prismatic (or cylindrical) enclosing forms. Indeed, the inter-

packing distances along and perpendicular to the threefold

axis are zero. The crystal lattice is hexagonal �ða; cÞ, Bravais

type 32H, with a = 116.61 and c = 285.61 Å. The packing lattice

�Pðu;wÞ is also hexagonal, with u ¼ a=12 and w ¼ c=6 (Fig.

3). The relations with the molecular form parameter r0 are

u ¼ 5ð3Þ1=2
r0=6 and w ¼ H=2 ¼ 5ð2Þ1=2

r0, implying an axial

ratio c=a ¼ 6w=12u ¼ 61=2 ¼ 2:4495, which is the value

observed experimentally (2.4492).

The crystal space group is H32 and the centres of the

packing forms are at the Wyckoff position 3(a) 000; 1
3

2
3

2
3 ;

2
3

1
3

1
3,

which for the axial ratio c=a ¼ 61=2 are at f.c.c. lattice points.

For ac ¼ 21=2ah one has

�ðah; chÞ ¼ 61=2Hðah; 61=2ahÞ ¼ �fccðacÞ: ð2Þ

3.3. Vanillyl-alcohol oxidase

In the third example the molecular axes of the biomolecule

are turned by an angle ’ = 7.12� around the common tetra-

gonal c axis, with respect to the crystal axes a and b.

The biomolecule is an octamer with point-group symmetry

KM ¼ 4=mmm. The molecular enclosing form has been

described in a previous publication (Janner, 2005). The central

channel along the tetragonal axis has a square basis with

radius R0 ¼ r0 = 12.18 Å and height H ¼ 6r0. The external

enclosing square, turned by 45� with respect to the square with

edge L ¼ 12r0 as indicated in Fig. 13 of Janner (2005), has

radius Re ¼ 8r0. The form lattice �Fða0Þ is cubic with lattice

parameter a0 ¼ r0. The rotation of the biomolecule being

rational [tanð’Þ ¼ 1=8], the form lattice and the packing lattice

are mutually commensurate. But instead of choosing a packing

form oriented as the molecule, it is more convenient to adopt a

crystal-oriented tetragonal form, even if at the price of some

small protruding chain segments and with an overall fitting less

good than for the molecular form indicated above.

The basis of the crystal-oriented packing form has an

external square basis with edge Le ¼ 10a0, which is truncated

at 2a0 from the square vertices. The internal square, turned by

45�, has an edge L0 ¼ 21=2a0. In the axial tetragonal direction

the minimal height is H1 ¼ 4a0 and the maximal one is

H2 ¼ 6a0 ¼ H, so that a0 ’ r0 [see Fig. 4, expressed, however,

in terms of the packing lattice �Pðu;wÞ instead of the form

lattice �Fða0; c0Þ].

The crystal packing is tetragonal centred. The crystal lattice

is �ða; cÞ ¼ 4I with a = 130.24 and c = 135.51 Å, whereas the

packing lattice �Pðu;wÞ, also tetragonal centred, has lattice

parameters u ¼ a=10, w ¼ c=10. The packing forms are close

packed (as already mentioned) leading to the relations

Le ¼ a; H1 þH2 ¼ c; ð3Þ

so that u ¼ a0 = 13.024 Å ’ r0 = 12.18 Å and w = 13.351 Å.

Both the packing lattice and the crystal lattice are nearly

cubic. Their axial ratio c=a ¼ w=u ¼ 1:025 is comparable with

the ratio a0=r0 ¼ 1:07. The tetragonal deviation from the cubic

lattice can be seen as a consequence of the molecular ’
rotation.

The crystal space group is I4 and the centres of the packing

forms are at the Wyckoff position 2(a) 000; 1
2

1
2

1
2.

3.4. Octameric SAP-like pentraxin from Limulus polyphemus

The octameric pentraxin is a biomolecule with the point-

group symmetry 822, which is crystallographic in four

dimensions but not in three, because only a four-dimensional
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Figure 3
The crystal of metcyanin II is a cubic close packing of hexagonal prismatic
enclosing forms (or alternatively of inscribed cylinders) with space-group
symmetry H32. The packing lattice�Pðu;wÞ, turned by 60� with respect to
the form lattice, is related to the hexagonal crystal lattice �ða; cÞ by
a ¼ 12u ¼ 31=2Re and c ¼ 6w ¼ 3H ¼ 3ð2Þ1=2Re, so that the axial ratio
c=a is 61=2 and � is in fact f.c.c.



lattice is left invariant by 822 and no three-dimensional one.

Nevertheless, indexing the vertices of an enclosing form

having the symmetry of the biomolecule is still possible by

four (rational) indices, which are the coordinates with respect

to a Z-module MF of rank 4 and dimension 3. In the present

case MF may be improperly called an octagonal lattice, even if

MF is in fact the projection of a four-dimensional lattice. This

is known from the theory of quasi-crystals and is discussed in

detail for biomacromolecules in Janner (2005). The metric of

MF is fixed (as in other axial-symmetric cases) by two para-

meters a and c, with a the radius of the regular polygon (the

octagon) and c the height (along the rotational axis) of the

octagonal form.

The molecular form of the pentraxin has an octagonal

central hole with radius R0 ¼ r0 = 29 Å connected to the

external envelope by a star octagon, with Schäfli symbol {8/3}.

The external octagon has radius Re ¼ �f8=3gR0, where

�f8=3g ¼ 1þ 21=2. The height H of the octagonal form is equal

to the radius Re, so that MFða; cÞ is isometric octagonal, as

shown in Fig. 5: c=a ¼ H=Re ¼ 1 and is fixed by one single

parameter: Re ¼ H = 70 Å.

The packing form is a small tetragonal deformation of

the molecular form and is built from two squares in a relative

45� orientation, and with a height H0 slightly shorter than H

(Fig. 6).

The packing lattice �Pðu;wÞ is tetragonal 422P, whereas the

crystal lattice �ða; cÞ is tetragonal centred 422I. The lattice

parameters are: a = 173.33, c = 98.81 Å and u ¼ a=5;w ¼ c=6.

Disregarding the contraction of the packing unit height H0

with respect to H, the mutual relations between form and

packing are: Re ¼ 2u ¼ 69:33 ð74Þ;H ¼ 4w ¼ 65:27 ð70Þ and

because H ¼ Re the axial ratio of the crystal lattice is given by
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Figure 5
The octagonal molecular form of the octameric SAP-like pentraxin from
Limulus polyphemus has a central hole (with radius R0) related by a star
octagon {8/3} to the external envelope (with radius Re), so that
Re ¼ �f8=3gR0, with �f8=3g ¼ 1þ 21=2. The (projected) octagonal form
lattice MFðRe;HÞ is isometric, because H ¼ Re (axial ratio 1).

Figure 4
Crystal close packing of the vanillyl-alcohol oxidase packing forms with
vertices at the points of the tetragonal packing lattice �Pðu;wÞ, having
parameters related to the tetragonal centred crystal lattice �ða; cÞ by
a ¼ 10u and c ¼ 10w, which only slightly deviates from a cubic lattice
(u ¼ ao = 13.0 Å, w = 13.5 Å). The tetragonal central channel of the
packing form has radius R0 ¼ u and height H ¼ H1 ¼ 6w, whereas a
smaller height (minimal) occurs in the enclosing form H2 ¼ 4w, ensuring
close packing: c ¼ H1 þH2. The protruding chain segments are due to a
mismatch between the packing form and the underlying molecular form,
turned by an angle of 7.12� around the tetragonal axis. The basis square
with edge Le ¼ a ¼ 10u is truncated by 2u.



c=a ¼ 6w=5u ¼ 3=5 ð0:57Þ, so that this lattice is (nearly)

integral.

The crystal space group is I422. The centres of the packing

units are at the Wyckoff position 2(a) 000; 1
2

1
2

1
2.

3.5. Human Dmc1 protein

The biomolecule Dmc1 is an octamer with non-crystal-

lographic symmetry 822 as in the previous example. The

integral scaling transformation that leaves the octagonal

molecular module MF invariant relates the radius of the

central hole to that of the external boundary Re by six

successive star polygons {8/2}, where each star polygon is

obtained by connecting alternative octagonal vertices. So

R0 ¼ r0 ¼ �
6
f8=2gRe; �f8=2g ¼ 0:765 . . . ð4Þ

and the height of the enclosing form is H ¼ Re=21=2. Therefore

the Z-module MFðRe; 21=2ReÞ is integral. In the crystal the

packing unit is a pair of stacked octamers, twisted by �7:5�

around the tetragonal c axis and forming a double octagonal

ring with external radius Rd = 67.1 Å (Fig. 7). The height of the

layer is Hd ¼ 21=2Rd cosð�=8Þ ¼ 21=2R.

The crystal packing has a layer structure. Each layer builds

an octagonal tiling of the double-stacked octamers. The

packing lattice is tetragonal �Pðu;wÞ ¼ 422P and the crystal

lattice tetragonal centred �ða; cÞ ¼ 422I, as in the previous

example. The lattice parameters are: a = 124.09, c = 218.83 Å

and u ¼ a=4;w ¼ c=10. The relations with the double octa-

hedral ring are

a ¼ 2Rd
e cos

�

8

� �
¼ 4u and Hd ¼ 4w ¼

a

21=2
; ð5Þ

implying the axial ratios w=u ¼ 1=21=2 and c=a ¼ 5ð2Þ1=2=4 ¼

1:767 ð1:613Þ (the experimentally observed value is given in

brackets) (Fig. 8). The crystal lattice is, therefore, integral, as

also are (approximately) the packing lattice �Pðu;wÞ and the

octagonal form lattice MFðRe;HÞ.

The crystal space group is I422 and the centres of the

packing units are at the lattice points 000, 1
2

1
2

1
2, as in the

previous example.

3.6. Heptameric SAP-like pentraxin from Limulus poly-
phemus

The heptameric pentraxin biomolecule has point-group

symmetry KM ¼ 722, which is non-crystallographic in three

dimensions, like the octameric pentraxin considered above. In

the present case, 722 has no axial-symmetric crystallographic

subgroups allowing consideration of an indexable enclosing

packing form, as was the case for the octameric pentraxin.

Therefore, for the heptameric pentraxin molecule two

enclosing forms are considered: an heptagonal form and a
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Figure 7
Comparison between the molecular enclosing form of the single human
Dmc1 octamer (left-hand side) and the double-stacked ring of two such
octamers (right-hand side). The central hole of the octamer has radius R0

related by the octagrammal scaling factor �6
f8=2g (where �f8=2g ¼ 0:765 . . .)

to the radius Re = 65.5 Å of the external boundary. The height is
H ¼ Re=21=2. In the double-stacked ring, the corresponding values are
Red = 67.1 Å and Hd ¼ 21=2Red cosð�=8Þ.

Figure 6
The space group of the octameric SAP-like pentraxin crystal is I422, with
lattice parameters a and c, while the molecular symmetry is 822, as shown
in Fig. 5. The packing lattice �Pðu;wÞ has parameters u ¼ a=5 and
w ¼ c=6, and the corresponding indexed packing form has radius 2u and
height 4w. Disregarding the small deviations between the molecular and
the packing forms shown (which are incommensurate), one has Re ¼ 2u
and H ¼ 4w, implying by H ¼ Re an axial ratio c=a ¼ 3=5 instead of the
observed 0.57 value.



cylindrical form. The heptagonal form has the expected

properties: an external envelope with as basis a regular

heptagon with radius Re = 68 Å and height H ¼ ð10=9ÞRe, and

a central hole with radius R0 scaled with respect to the

external envelope by a factor �3
f7=2g, where �f7=2g ¼ 0:6920 . . .,

so that the corresponding heptagons are mutually related by

three successive star heptagons {7/2}.

The enclosing cylindrical ring is inscribed in the heptagonal

form. It has an outside radius Rc ¼ Re cosð�=7Þ and an inside

radius given by R0c ¼ Rc=3. The last relation expresses the fact

that �3
f7=2g ¼ 0:331 is a good approximation of 1

3 (see Fig. 9).

A cylindrical form is non-indexable. Nevertheless, one finds

in this case also a natural packing lattice �P having the same

symmetry as the monoclinic crystal lattice �ða; b; c; �Þ ¼ 121P

and lattice points at the (external) cylindrical envelope (Fig.

10). In the present case a = 98.32, b = 167.56, c = 140.87 Å and

� ¼ 92:50�. For �Pðu; v;w; �Þ one finds u ¼ a=8, v ¼ b=8,

w ¼ c=16 and � ¼ 92:50�.

The relations with the cylindrical enclosing ring are

H ¼
10

9
Re ¼ 6u ¼

3

4
a ¼ 73:74 ð73:74Þ Å

Rc ¼ cos
�

7

� �
Re ¼ 7w ¼

7

16
c ¼ 61:26 ð61:63Þ Å

R0c ¼
1

3
Rc ¼ v ¼

b

8
¼ 20:94 ð20:54Þ Å;

where the numerical values are those obtained from the

enclosing form and those given in brackets are derived from

the crystal lattice parameters.
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Figure 9
Heptagonal and cylindrical enclosing forms of the heptameric SAP-like
pentraxin. The radius Re of the external heptagon is related to the central
hole radius R0 by the heptagrammal scaling factor �3

f7=2g ¼ 0:331
(�f7=2g ¼ 0:692 . . .) and to the height by H ¼ 10Re=9. The enclosing
cylinder ring has an outside radius Rec ¼ Re cosð�=7Þ and an internal
radius R0 ¼ Re=3.

Figure 8
Crystal packing of the double-stacked octameric Dmc1 protein and
corresponding tetragonal packing lattice �Pðu;wÞ connected with the
lattice �ða; cÞ of the crystal space group I422 by the relations
a ¼ 4u ¼ 2Red cosð�=8Þ, c ¼ 20w and Hd ¼ 4w ¼ a=21=2, so that the axial
ratio is c=a ¼ 5ð2Þ1=2=4 and � is integral (approximately). The centres of
the packing units are at the Wyckoff positions 2(a) 000; 1

2
1
2

1
2.



The crystal space group is P1211 and the centres of the

enclosing forms are at the Wyckoff position 2(a) xyz; x 1
2þ y z

with x ¼ y ¼ z ¼ 1
4.

3.7. Light-harvesting protein LH2

The nonameric light-harvesting protein is a biomolecule

with point-group symmetry KM ¼ 922. Its enclosing form has

already been discussed in Janner (2005). The nonagonal

enclosing form has an external radius Re = 36.7 Å and an

internal radius of a regular nonagon obtained from Re by the

combination of a {9/2} and a {9/3} star polygon, so

R0 ¼ �f9=2g�f9=3gRe, where �f9=2g ¼ 0:815 . . . and �f9=3g ¼

0:532 . . . [see Fig. 7 of Janner (2005)]. In the crystal, the

packing unit is a double-stacked nonamer, compressed along

the ninefold axis and with height H ¼ 3Re. For similar reasons

as in the previous case, the enclosing form one has to choose is

a cylindrical ring. The external cylinder has a radius Rc ¼ Re

and the radius of the internal cylinder R0c ¼ 2Re=5 is slightly

smaller than that of the cylinder inscribed in the central hole

with radius cosð�=9ÞR0 (Fig. 11).

The crystal lattice is f.c.c., despite the fact that the space

group is trigonal G = H32 (= R32). One indeed finds

�ða; cÞ ¼ 32Hða; 61=2aÞ ¼ 61=2H ¼ 432Fða0Þ; ð6Þ

with lattice parameters a ¼ 120:30, c = 296.20 Å and an axial

ratio c=a ¼ 2:462 (61=2 ¼ 2:449). The cubic lattice parameter is

af:c:c: ¼ 21=2a.

The packing lattice is hexagonal �Pðu;wÞ with lattice

parameters u ¼ a=12, w ¼ c=33 and an axial ratio w=u ¼
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Figure 11
The double-stacked nonameric light-harvesting protein LH2 has a central
hole with radius R0 related by the nonagrammal scalings of the two star
nonagons {9/2} and {9/3} to the external radius by R0 ¼ �f9=2g�f9=3gRe, with
�f9=2g ¼ 0:8152 . . . and �f9=3g ¼ 0:532 . . .. The height H ¼ 3Re is slightly
compressed with respect to twice the height of each of the stacked
nonamers. The enclosing ring has an external radius Rc ¼ Re and an
internal radius R0c ¼ R0 cosð�=9Þ, satisfying the relation (for a somewhat
smaller value) R0c ¼ 2Rc=5.

Figure 10
Monoclinic packing lattice �Pðu; v;w; �Þ (unique axis b) with u; v;w
parallel to the crystal axes a; b; c, respectively, and cylindrical packing
form of the heptameric SAP-like pentraxin viewed in the ðc; bÞ plane
(top) and ða; bÞ plane (bottom). The corresponding crystal lattice
�ða; b; c; �Þ is the sublattice given by a ¼ 8u; b ¼ 8v; c ¼ 14w. Both
lattices have � = 92.50�. The relations with the enclosing cylinder are
H ¼ 6u ¼ 3a=4, Rec ¼ 7w ¼ 7c=16, R0c ¼ v ¼ Rec=3 ¼ b=8. The centres
of the packing units are at the Wyckoff position 2(a) of the space group
P1211: xyz, x 1

2þ y z with x ¼ y ¼ z ¼ 1
4.



4ð6Þ1=2=11. The relations between the molecular form of the

double-stacked ring and the lattices are

Rc ¼
31=2

6
a ¼ 2ð3Þ1=2

u; Hc ¼
4

11
c ¼

4ð6Þ1=2

11
a;

Hc

Rc

¼ 24
21=2

11
:

ð7Þ

The ratio Hc=Rc of the cylindrical packing unit (Fig. 12) is a bit

larger than the ratio H=Re obtained from Fig. 11 for the

double-stacked nonamers (3.085 instead of 3.0).

The crystal space group is H32. The centres of the packing

forms (cylinders) are at the Wyckoff position 3(a) 000,
1
3

2
3

2
3 ;

2
3

1
3

1
3, so that the cylinders are cubic close packed.

3.8. Rhodopsin–retinal complex

The last example is only apparently simple: the enclosing

form, the point-group symmetry and the crystal packing are

trigonal or hexagonal and crystallographic in three dimen-

sions. Their mutual relations reveal unexpected interesting

aspects, which could hint at possible general properties.

The enclosing forms and form lattice of the trimeric

rhodopsin with symmetry KM ¼ 3 have already been discussed

in a previous paper (Janner, 2005). Here the rhodopsin–retinal

complex is considered as a whole. This has consequences for

the orientation and the characteristics of the hexagonal form

lattice. While the form lattice of the rhodopsin has parameters

R0 and H, with R0 the radius of the central hole and H the

height of the trimer, the form lattice of the rhodopsin–retinal

complex is given by �Fða0; c0Þ with a0 ¼ R0=3 and c0 ¼ H=30

and axial ratio c0=a0 ¼ 3ð3Þ1=2=10, with values a0 ¼ 3:5 and c0

= 1.82 Å. The external envelope of the rhodopsin has radius

Re ¼ 9a0, which is related to the height by H ¼ 31=2Re. The

corresponding parameters of the retinal enclosing form are
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Figure 12
Packing of the double-stacked light-harvesting protein LH2 in the crystal
with space group H32 and axial ratio c=a ¼ 61=2, implying that the crystal
lattice �ða; cÞ is f.c.c. (cubic lattice parameter af:c:c: ¼ 21=2a). The packing
lattice �Pðu;wÞ has parameters u ¼ a=12, w ¼ c=33 and axial ratio
w=u ¼ 4ð6Þ1=2=11. The packing form is a cylinder with radius
Rc ¼ 31=2a=6 ¼ 2ð3Þ1=2u and height Hc ¼ 4c=11 ¼ 12w, deviating a little
from the corresponding values Rc and H of the molecular form (Fig. 11).
The centres of the packing units are at the Wyckoff position 3(a)
000; 1

3
2
3

2
3 ;

2
3

1
3

1
3 of H32.

Figure 13
Packing unit of the rhodopsin–retinal complex in the crystal with space
group P63. The packing lattice �Pðu;wÞ is related to the crystal lattice
�ða; cÞ by a ¼ 20u and c ¼ 60w. The packing form of the rhodopsin has
height H ¼ c=2 ¼ 30w, internal radius R0 ¼ 3a0, inter-packing distance
D ¼ R0=31=2 and external radius Re ¼ 9a0 ¼ H=31=2, where a0 ¼

u= cosð�=6Þ. The corresponding packing parameters for the retinal are
Hr ¼ H=6 ¼ 5w, R0r ¼ 5r0 and Rer ¼ 6r0.



R0r ¼ 5a0;Rer ¼ 6a0 and Hr ¼ 5c0. The packing form of the

complex is turned by 45� around the hexagonal axis with

respect to the orientation of the molecular form indicated

above, but the corresponding parameters are the same. The

inter-packing distance is D ¼ 31=2a0 ¼ R0=31=2 ¼ 6.06 Å,

revealing the crystallographic compatibility between mole-

cular form and crystal packing parameters (Fig. 13).

Indeed, the packing lattice �Pðu;wÞ is connected to the

hexagonal crystal lattice �ða; cÞ by the relations a ¼ 20u =

61.06 Å, c ¼ 60w = 110.57 Å and to the form parameters by

u ¼ 31=2a0=2 and w ¼ c0 ¼ 3ð3Þ1=2
a0=10, leading to the axial

ratios w=u ¼ 3=5 and c=a ¼ 9=5 ð1:81Þ, with the experimental

values in brackets.

The crystal space group is P63 and the centres of the

hexagonal prismatic packing units are at the Wyckoff position

2(b) 1
3

2
3 z; 2

3
1
3

1
2þ z; for z ¼ 1

4 :

The geometric relations between the molecular enclosing

form, the space-group symmetry and packing (with packing

units and their centres) are shown in Fig. 14, for the empty

case (omitting the molecular chains), which recalls the space-

group diagrams in Volume A of International Tables for

Crystallography. Note that the origin of the packing lattice

indexing the molecular forms is different for the two Wyckoff

positions indicated above, and from that of the crystal lattice.

The origins involved are related by shifts of 1
3 ðaþ bÞ along the

diagonal of the two-dimensional hexagonal unit cell. This plot

looks like an interference pattern of hexagonal waves satis-

fying appropriate boundary conditions.

A similar diagrammatic representation of the relation

between forms and space-group unit cell for the case of the

light-harvesting protein LH2 is shown in Fig. 15 (compare with

Fig. 12).
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Figure 14
Geometric relations underlying the packing forms of the rhodopsin–
retinal complex in the crystal with space-group symmetry P63. The centres
of the packing forms (small circles) are at the Wyckoff position 2(b)
1
3

2
3 z; 2

3
1
3

1
2þ z with z ¼ 1

4.

Figure 15
Empty geometric arrangement of cylindrical forms underlying, in a
similar way as in Fig. 14, the packing of the forms enclosing the light-
harvesting protein LH2 shown in Fig. 12. The pattern suggests standing
cylindrical waves with appropriate boundary conditions, compatible with
both the molecular and the crystal structures.



4. Final remarks

The validity of the concepts packing form and of the asso-

ciated packing lattice (intended to represent a bridge between

enclosing form and form lattice for single biomolecules,

already introduced in previous publications, and crystal lattice)

has been tested on a variety of concrete examples.

It has been shown how non-indexable packing forms, like

spheres and cylinders, natural for biomolecules with non-

crystallographic point-group symmetry, could nevertheless be

associated with a packing lattice, by considering alternative

forms circumscribing or inscribing the enclosing spheres or

cylinders, respectively.

In many cases it is then possible to relate the integral

property of form lattices to the observed parameter values of

the crystal lattice, and to recognize its integral (or rational)

character, even if not always structurally relevant, because of

the possible deformation of the single biomolecules when

considered in the crystal packed state.

The examples discussed support the evidence, pointed out

in x1, of the non-accidental character of structural properties

not explained by the current crystallographic laws, such as

integral lattices and indexable molecular enclosing forms

allowing one to relate external boundaries with possible

internal holes and to find relations between the lattice para-

meters of a given crystal. In particular, intriguing structural

properties have been found for trigonal proteins with hexa-

gonal enclosing forms packed according to a cubic lattice.

Thanks are due to M. C. Feiters for having drawn attention

to the peculiar properties of hemocyanin and of pentraxin in

arthropods such as Limulus, and to A. van der Avoird for

raising, after a talk given by the author, the general question of

the relation between the crystals of biomacromolecules and

their indexed enclosing forms.
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